Problem Statement (LeetCode 10)
Given an input string s
and a pattern p
, implement regular expression matching with support for .
and *
where:
.
matches any single character.*
matches zero or more of the preceding element.
The matching should cover the entire input string, not just a substring.
Examples
Example 1
Input: s = "aa", p = "a*"
Output: true
Explanation: '*' allows 'a' to repeat 0 or more times.
Example 2
Input: s = "ab", p = ".*"
Output: true
Explanation: ".*" means "any character (*) zero or more times."
Example 3
Input: s = "mississippi", p = "mis*is*p*."
Output: false
Constraints
1 <= s.length, p.length <= 20
s
contains only lowercase English letters.p
contains only lowercase English letters,.
and*
.
Optimal Approach: Dynamic Programming (O(m * n) Time Complexity)
Intuition
- Use Dynamic Programming (DP) to break the problem into smaller subproblems.
- Define
dp[i][j]
as whethers[0..i-1]
matchesp[0..j-1]
.
Key Observations
- If
p[j-1]
is a normal character (a-z
):dp[i][j] = dp[i-1][j-1]
ifs[i-1] == p[j-1]
.
- If
p[j-1]
is.
(matches any character):dp[i][j] = dp[i-1][j-1]
.
- If
p[j-1]
is*
(zero or more ofp[j-2]
):dp[i][j] = dp[i][j-2]
(zero occurrences ofp[j-2]
).- OR
dp[i][j] = dp[i-1][j]
ifs[i-1] == p[j-2]
orp[j-2] == '.'
.
LeetCode-Compatible C++ Code
class Solution {
public:
bool isMatch(string s, string p) {
int m = s.size(), n = p.size();
vector<vector<bool>> dp(m + 1, vector<bool>(n + 1, false));
dp[0][0] = true; // Empty string matches empty pattern
// Handle patterns with '*' that match empty string
for (int j = 2; j <= n; j += 2) {
if (p[j - 1] == '*') {
dp[0][j] = dp[0][j - 2];
}
}
for (int i = 1; i <= m; i++) {
for (int j = 1; j <= n; j++) {
if (p[j - 1] == s[i - 1] || p[j - 1] == '.') {
dp[i][j] = dp[i - 1][j - 1]; // Direct match or '.' match
}
else if (p[j - 1] == '*') {
dp[i][j] = dp[i][j - 2]; // '*' acts as zero occurrence
if (p[j - 2] == s[i - 1] || p[j - 2] == '.') {
dp[i][j] = dp[i][j] || dp[i - 1][j]; // '*' acts as multiple occurrences
}
}
}
}
return dp[m][n];
}
};
Step-by-Step Explanation
Example 1: s = "aa"
, p = "a*"
Initial DP Table:
"" a *
"" T F T
a F T T
a F F T
✅ Palindrome!
Example 2: s = "mississippi"
, p = "mis*is*p*."
Initial DP Table:
"" m i s * i s * p * .
"" T F F F T F F T F T F
m F T F F T F F T F T F
i F F T F F T F T F T F
s F F F T F F T T F T F
❌ Not a palindrome!
Why This Approach is Best
Approach | Time Complexity | Space Complexity | Why? |
---|---|---|---|
Dynamic Programming (Best) | O(m * n) | O(m * n) | Solves efficiently using memoization. |
Brute Force | O(2^m) | O(m) | Exponential complexity. |
Recursion with Memoization | O(m * n) | O(m * n) | Similar to DP, but harder to debug. |
Alternative Approaches & Why Not?
1️⃣ Brute Force (Backtracking)
- Try all possible ways to match
s
andp
. - Problem: Exponential complexity
O(2^m)
→ Too slow.
Code
class Solution {
public:
bool isMatch(string s, string p) {
return backtrack(s, p, 0, 0);
}
bool backtrack(string &s, string &p, int i, int j) {
if (j == p.size()) return i == s.size();
bool firstMatch = (i < s.size() && (s[i] == p[j] || p[j] == '.'));
if (j + 1 < p.size() && p[j + 1] == '*') {
return backtrack(s, p, i, j + 2) || (firstMatch && backtrack(s, p, i + 1, j));
} else {
return firstMatch && backtrack(s, p, i + 1, j + 1);
}
}
};
❌ Not preferred due to exponential complexity.
Conclusion
✅ Best approach: Dynamic Programming (DP) with O(m * n)
complexity.
✅ Avoids exponential backtracking while ensuring correct results.
✅ Uses only O(m * n)
space, making it efficient for m, n ≤ 20
.
Recommended Problems for Practice
- Wildcard Matching ðŸŽ
- Valid Parentheses 🔢
- Longest Common Subsequence 🧩
🚀 Master Regular Expressions with Efficient DP Solutions!