LeetCode 22: Generate Parentheses

 Generate Parentheses – LeetCode Solution (C++)

Generating valid parentheses combinations is a fundamental backtracking problem that is frequently asked in coding interviews. In this article, we will cover the optimal approach, step-by-step explanations, dry runs, alternative methods, and complexity analysis.


Problem Statement

LeetCode 22: Generate Parentheses

Given n pairs of parentheses, write a function to generate all combinations of well-formed parentheses.

Example 1

Input:

n = 3

Output:

["((()))","(()())","(())()","()(())","()()()"]

Example 2

Input:

n = 1

Output:

["()"]

Optimal Approach – Backtracking (DFS)

Since we need all valid combinations, a brute-force approach would be inefficient.
Instead, we use backtracking to explore all possible sequences while maintaining a valid parenthesis structure.

Key Idea

  1. A valid sequence must contain n open (() and n close ()) brackets.
  2. At any point:
    • We can add an open bracket (() if the count of ( is less than n.
    • We can add a close bracket ()) if the count of ) is less than the count of (.
  3. Once both ( and ) reach n, a valid sequence is formed.

Time Complexity

  • O(4^n / sqrt(n)) → Number of valid sequences follows the Catalan number series.
  • Exponential growth, but optimal for this problem.

Space Complexity

  • O(N) → Recursion depth reaches 2N in worst case.

C++ Solution (LeetCode Compatible)

class Solution {
public:
    vector<string> generateParenthesis(int n) {
        vector<string> result;
        backtrack(result, "", 0, 0, n);
        return result;
    }

private:
    void backtrack(vector<string>& result, string current, int open, int close, int n) {
        if (current.size() == 2 * n) { // Base case: valid combination
            result.push_back(current);
            return;
        }
        if (open < n) backtrack(result, current + "(", open + 1, close, n); // Add '(' if possible
        if (close < open) backtrack(result, current + ")", open, close + 1, n); // Add ')' if valid
    }
};

Step-by-Step Code Explanation

  1. Initialize the Result List

    • vector<string> result; stores valid combinations.
  2. Recursive Backtracking Function

    • backtrack(result, "", 0, 0, n); starts with an empty string and 0 open/close counts.
  3. Base Case – Stop Recursion

    • If current.size() == 2 * n, store the valid combination.
  4. Recursive Case – Add Parentheses

    • Add ( if open < n.
    • Add ) if close < open.

Dry Run (Step-by-Step Execution)

Example Input

n = 3

Recursive Calls

Step Open Count Close Count Current String Action
1 1 0 ( Add (
2 2 0 ( ( Add (
3 3 0 ((( Add (
4 3 1 ((()) Add )
5 3 2 ((())) Add )
6 3 3 ((())) Valid combination ✅
7 Backtrack 2 (() Add )
8 3 2 (()()) Add )
9 3 3 (()()) Valid combination ✅

Final Output

["((()))","(()())","(())()","()(())","()()()"]

Alternative Approaches & Why Not?

Approach Time Complexity Space Complexity Notes
Brute Force (Generate All Strings & Filter) O(2^(2N)) O(2N) ❌ Generates invalid sequences, high overhead
Backtracking (Optimal Approach) O(4^N / sqrt(N)) O(N) ✅ Efficient, avoids invalid cases
Dynamic Programming (DP Approach) O(2^N) O(N^2) ❌ Slower than backtracking
Stack-based Validation O(N log N) O(N) ❌ Adds extra memory for stack operations

Why Backtracking is the Best?

Avoids unnecessary sequences.
Only explores valid solutions.
Minimal extra space.


Conclusion

Would you like more detailed tutorials like this? Let me know! 🚀

Sandip Mhaske

I’m a software developer exploring the depths of .NET, AWS, Angular, React, and digital entrepreneurship. Here, I decode complex problems, share insightful solutions, and navigate the evolving landscape of tech and finance.

Post a Comment

Previous Post Next Post