Problem Statement
Given a string s
and a dictionary of words wordDict
, return true
if s
can be segmented into a space-separated sequence of one or more dictionary words.
Constraints:
1 <= s.length <= 300
1 <= wordDict.length <= 1000
1 <= wordDict[i].length <= 20
s
andwordDict[i]
consist of lowercase English letters.
Optimal Approach - Dynamic Programming (Bottom-Up)
The best way to solve this problem efficiently is using Dynamic Programming (DP) with a bottom-up approach.
Explanation:
- Create a
dp
array of sizes.length() + 1
, initialized tofalse
exceptdp[0] = true
. - Iterate over
s
and check if any substring ending at the current index is inwordDict
. - If found, update
dp[i]
totrue
. - Return
dp[s.length()]
as the result.
C++ Code (LeetCode-Compatible)
class Solution {
public:
bool wordBreak(string s, vector<string>& wordDict) {
unordered_set<string> wordSet(wordDict.begin(), wordDict.end());
vector<bool> dp(s.length() + 1, false);
dp[0] = true;
for (int i = 1; i <= s.length(); ++i) {
for (int j = 0; j < i; ++j) {
if (dp[j] && wordSet.find(s.substr(j, i - j)) != wordSet.end()) {
dp[i] = true;
break;
}
}
}
return dp[s.length()];
}
};
Step-by-Step Explanation
-
Initialization:
- Create a boolean
dp
array of sizes.length() + 1
, initialized tofalse
. - Set
dp[0] = true
since an empty string is always segmentable.
- Create a boolean
-
Iterate Over Substrings:
- For each
i
(1 tos.length()
), check ifs.substr(j, i-j)
exists inwordDict
. - If
dp[j]
istrue
and the substring exists in the dictionary, markdp[i]
astrue
.
- For each
-
Return Result:
- If
dp[s.length()]
istrue
, returntrue
, else returnfalse
.
- If
Dry Run / Execution Steps
Example:
Input: s = "leetcode", wordDict = ["leet", "code"]
DP Table Calculation:
dp[0] = true (Base case)
dp[1] = false
dp[2] = false
dp[3] = false
dp[4] = true ("leet" found in dict)
dp[5] = false
dp[6] = false
dp[7] = false
dp[8] = true ("code" found in dict)
Output: true
Alternative Approaches & Why Not?
Approach | Time Complexity | Space Complexity | Why Not? |
---|---|---|---|
Brute Force (Recursion) | Exponential | O(n) | Very slow for large inputs |
Backtracking with Memoization | O(n^2) | O(n) | Still slower compared to DP |
Bottom-Up DP (Iterative) | O(n^2) | O(n) | Best for performance and readability |
Trie-Based Approach | O(n * m) | O(n * m) | More complex but useful for large dictionaries |
Best Solution & Why It’s Best
The bottom-up DP approach is the most efficient because:
- It avoids recursion overhead.
- It has a predictable time complexity of
O(n^2)
. - It guarantees the optimal solution.
Complexity Analysis
- Time Complexity:
O(n^2)
(nested loops checking substrings) - Space Complexity:
O(n + m)
(DP array + word dictionary storage)
Conclusion
- The best approach is Bottom-Up Dynamic Programming.
- Alternative approaches like recursion or memoization fail in efficiency.
- Recommended practice problems:
- Concatenated Words (LeetCode 472)
- Word Break II (LeetCode 140)
- Palindrome Partitioning (LeetCode 131)