Problem Statement
A Trie (pronounced as "try") or Prefix Tree is a tree data structure used to store strings efficiently. Implement a Trie
class that supports the following operations:
insert(word)
: Inserts the stringword
into the Trie.search(word)
: Returnstrue
if the stringword
is in the Trie (as a complete word).startsWith(prefix)
: Returnstrue
if any word in the Trie starts with the givenprefix
.
Example
Input:
Trie trie = new Trie();
trie.insert("apple");
trie.search("apple"); // Returns true
trie.search("app"); // Returns false
trie.startsWith("app"); // Returns true
trie.insert("app");
trie.search("app"); // Returns true
Optimal Approach: Trie Data Structure
The most efficient way to solve this problem is by using a Trie (Prefix Tree), where each node represents a character and stores children for subsequent characters.
Algorithm Steps:
- Insertion:
- Traverse the Trie based on the characters in
word
. - Create new nodes as needed.
- Mark the last node as the end of a word.
- Traverse the Trie based on the characters in
- Search:
- Traverse the Trie based on characters in
word
. - If a character is missing, return
false
. - Return
true
if the last character marks the end of a word.
- Traverse the Trie based on characters in
- Prefix Search:
- Similar to
search
, but returntrue
even if it’s not the end of a word.
- Similar to
LeetCode-Compatible C++ Solution
class Trie {
private:
struct TrieNode {
bool isEnd;
TrieNode* children[26];
TrieNode() {
isEnd = false;
fill(begin(children), end(children), nullptr);
}
};
TrieNode* root;
public:
Trie() {
root = new TrieNode();
}
void insert(string word) {
TrieNode* node = root;
for (char c : word) {
int index = c - 'a';
if (!node->children[index]) {
node->children[index] = new TrieNode();
}
node = node->children[index];
}
node->isEnd = true;
}
bool search(string word) {
TrieNode* node = root;
for (char c : word) {
int index = c - 'a';
if (!node->children[index]) return false;
node = node->children[index];
}
return node->isEnd;
}
bool startsWith(string prefix) {
TrieNode* node = root;
for (char c : prefix) {
int index = c - 'a';
if (!node->children[index]) return false;
node = node->children[index];
}
return true;
}
};
Step-by-Step Explanation
- Node Structure: Each node stores children (26 letters) and an
isEnd
flag. - Insertion: Traverse existing nodes or create new ones.
- Search: Check if all characters exist and the last character is a word end.
- Prefix Search: Check if the characters exist without requiring an exact word match.
Dry Run with Sample Input
Given Input:
trie.insert("apple");
trie.search("apple");
trie.search("app");
trie.startsWith("app");
trie.insert("app");
trie.search("app");
Execution:
Operation | Trie Structure | Output |
---|---|---|
Insert "apple" | root → a → p → p → l → e (end) | - |
Search "apple" | Found all chars, isEnd = true | ✅ True |
Search "app" | Found all chars, isEnd = false | ❌ False |
StartsWith "app" | Found all chars | ✅ True |
Insert "app" | Mark p as end of word |
- |
Search "app" | Found all chars, isEnd = true | ✅ True |
Alternative Approaches
1. Using HashMap (Trie Alternative)
- Time Complexity: O(N) for each operation.
- Space Complexity: O(N × 26) for storing all words.
- Why Not? Still a Trie-based approach, but using
unordered_map
instead of arrays.
2. Using Set Data Structure
- Idea: Store all words in a
unordered_set<string>
. - Time Complexity: O(1) for exact search, O(N) for prefix search.
- Why Not? Takes extra space and inefficient for prefix matching.
3. Brute Force (Linear Search in List of Words)
- Time Complexity: O(N) per query.
- Space Complexity: O(N).
- Why Not? Slow for large datasets.
Best Solution: Trie Data Structure
Approach | Time Complexity | Space Complexity | Efficiency |
---|---|---|---|
Brute Force | O(N) per search | O(N) | ❌ Slow |
HashMap-Based Trie | O(N) per op | O(N × 26) | ❌ Extra Space |
Trie (Optimal) | O(N) per op | O(N × 26) | ✅ Best |
The Trie is the best approach as it efficiently handles insertions, searches, and prefix queries in O(N) time.
Conclusion
The Trie Data Structure is the optimal approach for solving the Implement Trie (Prefix Tree) problem, providing efficient insert, search, and prefix matching operations in O(N) time.
Similar Problems for Practice:
This problem is a great example of how Trie structures enable fast lookup operations.