Problem Statement
Design a data structure that supports adding new words and finding words even if they contain ‘.’ as a wildcard character.
Implement the WordDictionary
class:
void addWord(word)
: Adds a word into the data structure.bool search(word)
: Returnstrue
if the word is in the data structure, otherwise returnsfalse
. The word may contain.
where.
can match any letter.
Example
Input:
WordDictionary wordDictionary = new WordDictionary();
wordDictionary.addWord("bad");
wordDictionary.addWord("dad");
wordDictionary.addWord("mad");
wordDictionary.search("pad"); // Returns false
wordDictionary.search("bad"); // Returns true
wordDictionary.search(".ad"); // Returns true
wordDictionary.search("b.."); // Returns true
Optimal Approach: Trie with DFS (Backtracking)
The most efficient way to solve this problem is by using a Trie (Prefix Tree) combined with Depth-First Search (DFS) for wildcard searches.
Algorithm Steps:
- Insertion (
addWord
):- Traverse the Trie and create new nodes if needed.
- Mark the last node as the end of a word.
- Search (
search
):- Traverse the Trie normally for non-wildcard characters.
- For
.
wildcard, recursively search all possible child nodes.
LeetCode-Compatible C++ Solution
class WordDictionary {
private:
struct TrieNode {
bool isEnd;
TrieNode* children[26];
TrieNode() {
isEnd = false;
fill(begin(children), end(children), nullptr);
}
};
TrieNode* root;
bool searchHelper(const string &word, int index, TrieNode* node) {
if (!node) return false;
if (index == word.size()) return node->isEnd;
char c = word[index];
if (c == '.') {
for (TrieNode* child : node->children) {
if (child && searchHelper(word, index + 1, child)) {
return true;
}
}
return false;
} else {
int i = c - 'a';
return searchHelper(word, index + 1, node->children[i]);
}
}
public:
WordDictionary() {
root = new TrieNode();
}
void addWord(string word) {
TrieNode* node = root;
for (char c : word) {
int index = c - 'a';
if (!node->children[index]) {
node->children[index] = new TrieNode();
}
node = node->children[index];
}
node->isEnd = true;
}
bool search(string word) {
return searchHelper(word, 0, root);
}
};
Step-by-Step Explanation
- Node Structure: Each node stores children (26 letters) and an
isEnd
flag. - Insertion: Traverse existing nodes or create new ones.
- Search:
- If a normal character, follow the Trie path.
- If
.
wildcard, recursively explore all children.
Dry Run with Sample Input
Given Input:
wordDictionary.addWord("bad");
wordDictionary.addWord("dad");
wordDictionary.addWord("mad");
wordDictionary.search("pad");
wordDictionary.search("bad");
wordDictionary.search(".ad");
wordDictionary.search("b..");
Execution:
Operation | Trie Structure | Output |
---|---|---|
Insert "bad" | root → b → a → d (end) | - |
Insert "dad" | root → d → a → d (end) | - |
Insert "mad" | root → m → a → d (end) | - |
Search "pad" | Not found | ❌ False |
Search "bad" | Found | ✅ True |
Search ".ad" | Matches "bad", "dad", "mad" | ✅ True |
Search "b.." | Matches "bad" | ✅ True |
Alternative Approaches
1. Using HashMap (Trie Alternative)
- Time Complexity: O(N) for each operation.
- Space Complexity: O(N × 26) for storing all words.
- Why Not? Still a Trie-based approach, but using
unordered_map
instead of arrays.
2. Using Set Data Structure
- Idea: Store all words in a
unordered_set<string>
. - Time Complexity: O(1) for exact search, O(N) for wildcard search.
- Why Not? Takes extra space and inefficient for wildcard matching.
3. Brute Force (Linear Search in List of Words)
- Time Complexity: O(N) per query.
- Space Complexity: O(N).
- Why Not? Slow for large datasets.
Best Solution: Trie with DFS
Approach | Time Complexity | Space Complexity | Efficiency |
---|---|---|---|
Brute Force | O(N) per search | O(N) | ❌ Slow |
HashMap-Based Trie | O(N) per op | O(N × 26) | ❌ Extra Space |
Trie + DFS | O(N) per op | O(N × 26) | ✅ Best |
The Trie + DFS solution is the best approach as it efficiently handles wildcard searches in O(N) time.
Conclusion
The Trie Data Structure with DFS is the optimal approach for solving the Design Add and Search Words Data Structure problem, providing efficient insert and search operations in O(N) time.
Similar Problems for Practice:
This problem demonstrates the power of Trie structures combined with DFS backtracking for wildcard searches.