LeetCode Solution 46 - Permutations

LeetCode 46: Permutations Solution | Backtracking in C++

Problem Statement

Given an array nums of distinct integers, return all possible permutations. You can return the answer in any order.

Example:

Input:

nums = [1,2,3]

Output:

[
  [1,2,3],
  [1,3,2],
  [2,1,3],
  [2,3,1],
  [3,1,2],
  [3,2,1]
]

Constraints:

  • 1 <= nums.length <= 6
  • -10 <= nums[i] <= 10
  • All the integers in nums are unique.

Optimal Approach: Backtracking

Explanation:

  1. Backtracking:
    • Swap elements to create permutations.
    • Recurse with the next index.
    • Swap back to restore order.
  2. Base Condition: If we reach the last index, store the permutation.

C++ Implementation (LeetCode-Compatible)

#include <vector>
using namespace std;

class Solution {
public:
    void backtrack(vector<int>& nums, int start, vector<vector<int>>& result) {
        if (start == nums.size()) {
            result.push_back(nums);
            return;
        }
        for (int i = start; i < nums.size(); i++) {
            swap(nums[start], nums[i]);
            backtrack(nums, start + 1, result);
            swap(nums[start], nums[i]); // Backtrack
        }
    }
    
    vector<vector<int>> permute(vector<int>& nums) {
        vector<vector<int>> result;
        backtrack(nums, 0, result);
        return result;
    }
};

Step-by-Step Explanation

  • Recursive Backtracking Approach:
    • Start with an empty permutation.
    • Swap elements and move forward.
    • Swap back (backtrack) to restore order.
    • Store results when reaching the base case.

Dry Run Example:

Input:

nums = [1,2,3]

Execution Steps:

Step Current Permutation Swaps
1 [1,2,3] Initial
2 [1,2,3] Swap(1,1)
3 [1,3,2] Swap(2,3)
4 [2,1,3] Swap(1,2)
5 [2,3,1] Swap(2,3)
6 [3,2,1] Swap(1,3)
7 [3,1,2] Swap(2,3)

Alternative Approaches & Why Not?

Approach Time Complexity Space Complexity Why Not Optimal?
Brute Force (Generate & Check) O(N!) O(N) Inefficient for larger N
Using STL next_permutation() O(N! * N) O(1) Extra sorting operations
Lexicographic Order O(N!) O(1) Difficult to implement manually

STL next_permutation() Approach (Alternative)

#include <vector>
#include <algorithm>
using namespace std;

class Solution {
public:
    vector<vector<int>> permute(vector<int>& nums) {
        vector<vector<int>> result;
        sort(nums.begin(), nums.end());
        do {
            result.push_back(nums);
        } while (next_permutation(nums.begin(), nums.end()));
        return result;
    }
};

Why is STL Less Optimal?

  • Uses next_permutation, which modifies and sorts the array.
  • Less intuitive for interview explanations.

Best Solution & Why?

Approach Time Complexity Space Complexity Best Choice?
Backtracking (Recursive Swap) O(N!) O(N) ✅ Best balance
STL next_permutation() O(N! * N) O(1) ❌ Extra sorting
Brute Force O(N!) O(N) ❌ Not scalable

Why is Backtracking Best?

  • Generates all permutations efficiently
  • Minimal extra space usage
  • Easy to explain & implement

Conclusion

  • Best Solution: Backtracking (Recursive Swap Method).
  • Why? Efficient O(N!) time complexity, intuitive, and widely used.
  • Alternative Solutions: STL next_permutation() (slower), Brute Force (too slow).

Practice More:

Sandip Mhaske

I’m a software developer exploring the depths of .NET, AWS, Angular, React, and digital entrepreneurship. Here, I decode complex problems, share insightful solutions, and navigate the evolving landscape of tech and finance.

Post a Comment

Previous Post Next Post