Problem Statement
Given an array nums
of length n
, where nums[i]
represents the maximum jump length from index i
, determine if you can reach the last index.
Example 1:
Input: nums = [2,3,1,1,4]
Output: true
Explanation: Jump 1 step from index 0 to 1, then 3 steps to the last index.
Example 2:
Input: nums = [3,2,1,0,4]
Output: false
Explanation: No matter what, you will reach index 3 and get stuck.
Optimal Approach: Greedy Algorithm
Idea
- Track the farthest index you can reach.
- Iterate over
nums
, updating the farthest reachable index. - If at any point, the current index is beyond the reachable range, return
false
. - If the farthest index reaches or exceeds
n-1
, returntrue
.
C++ Code
class Solution {
public:
bool canJump(vector<int>& nums) {
int maxReach = 0;
for (int i = 0; i < nums.size(); i++) {
if (i > maxReach) return false; // If stuck before reaching the end
maxReach = max(maxReach, i + nums[i]);
if (maxReach >= nums.size() - 1) return true;
}
return true;
}
};
Step-by-Step Explanation
- Initialize
maxReach = 0
(tracks the farthest we can go). - Iterate through the array:
- If
i > maxReach
, returnfalse
(we're stuck). - Update
maxReach
asmax(maxReach, i + nums[i])
. - If
maxReach
reachesn-1
, returntrue
.
- If
- If loop completes, return
true
(can reach the last index).
Dry Run
Example: nums = [2,3,1,1,4]
Index | nums[i] | maxReach Before | maxReach After | Can Move? |
---|---|---|---|---|
0 | 2 | 0 | 2 | Yes |
1 | 3 | 2 | 4 | Yes |
2 | 1 | 4 | 4 | Yes |
3 | 1 | 4 | 4 | Yes |
4 | 4 | 4 | 8 (end) | Yes |
Output: true
Alternative Approaches
1. Brute Force (Backtracking)
- Try all paths recursively.
- Time Complexity:
O(2^n)
(exponential) - Space Complexity:
O(n)
(recursion stack) - ❌ Not feasible for large inputs.
2. Dynamic Programming (Bottom-Up)
- Use
dp[i]
to store if we can reach indexi
. - Time Complexity:
O(n^2)
(nested loops) - Space Complexity:
O(n)
(extra array) - ❌ Too slow for large arrays.
Best Solution Comparison Table
Approach | Time Complexity | Space Complexity | Optimal? |
---|---|---|---|
Brute Force | O(2^n) |
O(n) |
❌ |
Dynamic Programming | O(n^2) |
O(n) |
❌ |
Greedy (Best) | O(n) |
O(1) |
✅ |
Complexity Analysis
- Time Complexity:
O(n)
(single pass throughnums
) - Space Complexity:
O(1)
(only one variablemaxReach
)
Conclusion
The greedy approach is the best as it ensures O(n)
runtime with O(1)
space. The problem is similar to:
Next Steps
- Try different variations of the problem to solidify concepts.
- Optimize using greedy patterns in other problems.
Hope this guide helps! 🚀 If you found this useful, check out similar problems on LeetCode. Happy coding!
Tags
leetcode